| Journal of mathematical cryptology | |
| Short Principal Ideal Problem in multicubic fields | |
| article | |
| Andrea Lesavourey1  Thomas Plantard1  Willy Susilo1  | |
| [1] Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong | |
| 关键词: Public-key cryptography; Post-quantum cryptography; Number Fields; Ideal lattice; Cryptanalysis; Unit Group; Cubic Field; | |
| DOI : 10.1515/jmc-2019-0028 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
One family of candidates to build a post-quantum cryptosystem upon relies on euclidean lattices. In order to make such cryptosystems more efficient, one can consider special lattices with an additional algebraic structure such as ideal lattices. Ideal lattices can be seen as ideals in a number field. However recent progress in both quantum and classical computing showed that such cryptosystems can be cryptanalysed efficiently over some number fields. It is therefore important to study the security of such cryptosystems for other number fields in order to have a better understanding of the complexity of the underlying mathematical problems. We study in this paper the case of multicubic fields.
【 授权许可】
CC BY|CC BY-NC-ND
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200005202ZK.pdf | 807KB |
PDF