期刊论文详细信息
Journal of mathematical cryptology
Quasi-subfield Polynomials and the Elliptic Curve Discrete Logarithm Problem
article
Ming-Deh Huang1  Michiel Kosters2  Christophe Petit3  Sze Ling Yeo4  Yang Yun5 
[1] University of Southern California, United States of America;University of California, United States of America;University of Birmingham, United Kingdom of Great Britain and Northern Ireland;Institute for Infocomm Research (I2R) and Nanyang Technical University;School of science, Jinling Institute of Technology
关键词: Elliptic Curve Discrete Logarithm Problem;    Cryptanalysis;    Finite Fields;   
DOI  :  10.1515/jmc-2015-0049
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First, we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete logarithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the existence of quasi-subfield polynomials.

【 授权许可】

CC BY|CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO202107200005181ZK.pdf 486KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次