期刊论文详细信息
Nonlinear engineering: Modeling and application
Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface
article
Machireddy Gnaneswara Reddy1 
[1] Department of Mathematics, Acharya Nagarjuna University Campus
关键词: Magnetohydrodynamics;    micropolar fluid;    heat transfer;    convective boundary condition;    Cattaneo-Christov heat flux;   
DOI  :  10.1515/nleng-2017-0043
来源: De Gruyter
PDF
【 摘 要 】

The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M . It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of B i .

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202107200004673ZK.pdf 1911KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次