| Nanophotonics | |
| Photonic spin Hall effect in metasurfaces: a brief review | |
| article | |
| Yachao Liu1  Yougang Ke1  Hailu Luo1  Shuangchun Wen1  | |
| [1] Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University | |
| 关键词: photonic spin Hall effect; metasurfaces; spin-orbit interaction; geometric phase; spin-Hall devices; | |
| DOI : 10.1515/nanoph-2015-0155 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
The photonic spin Hall effect (SHE) originates from the interplay between the photon-spin (polarization) and the trajectory (extrinsic orbital angular momentum) of light, i.e. the spin-orbit interaction. Metasurfaces, metamaterials with a reduced dimensionality, exhibit exceptional abilities for controlling the spin-orbit interaction and thereby manipulating the photonic SHE. Spin-redirection phase and Pancharatnam-Berry phase are the manifestations of spin-orbit interaction. The former is related to the evolution of the propagation direction and the latter to the manipulation with polarization state. Two distinct forms of splitting based on these two types of geometric phases can be induced by the photonic SHE in metasurfaces: the spin-dependent splitting in position space and in momentum space. The introduction of Pacharatnam-Berry phases, through space-variant polarization manipulations with metasurfaces, enables new approaches for fabricating the spin-Hall devices. Here, we present a short review of photonic SHE in metasurfaces and outline the opportunities in spin photonics.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200003878ZK.pdf | 2390KB |
PDF