期刊论文详细信息
Nanophotonics
Photonic analogues of the Haldane and Kane-Mele models
article
Sylvain Lannebère1  Mário G. Silveirinha1 
[1] Department of Electrical Engineering, University of Coimbra and Instituto de Telecomunicações;Department of Electrical Engineering, University of Lisbon – Instituto Superior Técnico
关键词: topological photonics;    photonic graphene;    symmetry protected waveguiding;    pseudo magnetic field;   
DOI  :  10.1515/nanoph-2019-0037
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

The condensed matter Haldane and Kane-Mele models revolutionized the understanding of what is an “insulator,” as they unveiled novel classes of media that behave as metals near the surface, but are insulating in the bulk. Here, we propose exact electromagnetic analogues of these two influential models relying on a photonic crystal implementation of “artificial graphene” subject to an effective magnetic field. For the Haldane model, the required effective magnetic field for photons can be emulated with a spatially variable pseudo-Tellegen response. For the Kane-Mele model, the spin-orbit coupling can be mimicked using matched anisotropic dielectrics with identical permittivity and permeability, without requiring any form of bianisotropic couplings. Using full-wave numerical simulations and duality theory we verify that the nontrivial topology of the two proposed platforms results in the emergence of topologically protected gapless edge states at the interface with a trivial photonic insulator. Our theory paves the way for the emulation of the two condensed matter models in a photonic platform and determines another paradigm to observe topologically protected edge states in a fully reciprocal all-dielectric and non-uniform anisotropic metamaterial.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200003582ZK.pdf 1025KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次