Nanophotonics | |
Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film | |
article | |
Yu-Ting Chen1  Lin Pan1  Anke Horneber1  Marius van den Berg1  Peng Miao1  Ping Xu3  Pierre-Michel Adam2  Alfred J. Meixner1  Dai Zhang1  | |
[1] Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen and LISA+;Institut Charles Delaunay, Université de Technologie de Troyes;MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology | |
关键词: TERS; SERS; phthalocyanines; charge transfer; photoluminescence; | |
DOI : 10.1515/nanoph-2019-0100 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
Phthalocyanines are frequently used as probing molecules in the field of single-molecule surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). In this work, we systematically compare the SERS and TERS spectra from a thin cobalt phthalocyanine (CoPc) film that is deposited on a Au film. The contributions from electromagnetic (EM), resonance, and charge-transfer enhancements are discussed. Radially and azimuthally polarized vector beams are used to investigate the influences of molecular orientation and the localized surface plasmon resonance (SPR). Furthermore, two different excitation wavelengths (636 and 532 nm) are used to study the resonant excitation effect as well as the involvement of the charge-transfer processes between CoPc and the Au substrate. It is shown that the Raman peaks of CoPc are mostly enhanced by 636 nm excitation through a combination of resonant excitation, high EM enhancement, and chemical enhancement via charge transfer from the metal to the molecule. At 532 nm excitation, however, the SERS and TERS spectra are dominated by photoluminescence, which originates from a photo-induced charge-transfer process from the optically excited molecule to the metal. The contributions of the different enhancement mechanisms explain the optical contrasts seen in the TERS images of Au nanodisks covered by the CoPc film. The insight achieved in this work will help to understand the optical contrast in sub- or single-molecule TERS imaging and apply SERS or TERS in the field of photocatalysis.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200003569ZK.pdf | 1633KB | download |