期刊论文详细信息
Demonstratio mathematica
A Combinatorial Proof of a Result on Generalized Lucas Polynomials
article
Alexandre Laugier1  Manjil P. Saikia2 
[1] LYCÉE TRISTAN CORBIÈRE;DIPLOMA STUDENT, MATHEMATICS GROUP THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL
关键词: binomial theorem;    Fibonacci number;    Fibonomial coefficient;    Lucas number q-analogue;    Generalized Lucas Polynomials;   
DOI  :  10.1515/dema-2016-0022
学科分类:外科医学
来源: De Gruyter
PDF
【 摘 要 】

We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000994ZK.pdf 349KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次