期刊论文详细信息
Demonstratio mathematica | |
A Combinatorial Proof of a Result on Generalized Lucas Polynomials | |
article | |
Alexandre Laugier1  Manjil P. Saikia2  | |
[1] LYCÉE TRISTAN CORBIÈRE;DIPLOMA STUDENT, MATHEMATICS GROUP THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL | |
关键词: binomial theorem; Fibonacci number; Fibonomial coefficient; Lucas number q-analogue; Generalized Lucas Polynomials; | |
DOI : 10.1515/dema-2016-0022 | |
学科分类:外科医学 | |
来源: De Gruyter | |
【 摘 要 】
We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000994ZK.pdf | 349KB | download |