Advances in Nonlinear Analysis | |
Existence and asymptotic behavior of ground state solutions of semilinear elliptic system | |
article | |
Habib Mâagli1  Sonia Ben Othman2  Safa Dridi2  | |
[1] King Abdulaziz University, College of Sciences and Arts, Rabigh Campus, Department of Mathematics;Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire | |
关键词: Semilinear elliptic system; asymptotic behavior; Karamata class; ground state solution; subsolution; supersolution; | |
DOI : 10.1515/anona-2015-0157 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
In this article, we take up the existence and the asymptotic behavior of entire bounded positive solutions to the following semilinear elliptic system: -Δ u = a1a_{1}( x )uαu^{\alpha}vrv^{r}, x ∈\inℝn\mathbb{R}^{n} ( n ≥\geq 3), -Δ v = a2a_{2}( x )vβv^{\beta}usu^{s}, x ∈\inℝn\mathbb{R}^{n}, u , v ¿ 0 in ℝn\mathbb{R}^{n}, lim|x|→+∞\lim_{|x|\rightarrow+\infty} u ( x ) = lim|x|→+∞\lim_{|x|\rightarrow+\infty} v ( x )=0, where α,β0{\nu:=(1-\alpha)(1-\beta)-rs>0}, and the functions a1a_{1}, a2a_{2} are nonnegative in ?locγ(ℝn){\mathcal{C}^{\gamma}_{\mathrm{loc}}(\mathbb{R}^{n})} (0¡γ¡1) and satisfy some appropriate assumptions related to Karamata regular variation theory.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000720ZK.pdf | 663KB | download |