期刊论文详细信息
Advances in Nonlinear Analysis
Existence and asymptotic behavior of ground state solutions of semilinear elliptic system
article
Habib Mâagli1  Sonia Ben Othman2  Safa Dridi2 
[1] King Abdulaziz University, College of Sciences and Arts, Rabigh Campus, Department of Mathematics;Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire
关键词: Semilinear elliptic system;    asymptotic behavior;    Karamata class;    ground state solution;    subsolution;    supersolution;   
DOI  :  10.1515/anona-2015-0157
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

In this article, we take up the existence and the asymptotic behavior of entire bounded positive solutions to the following semilinear elliptic system: -Δ u = a1a_{1}( x )uαu^{\alpha}vrv^{r}, x ∈\inℝn\mathbb{R}^{n} ( n ≥\geq 3), -Δ v = a2a_{2}( x )vβv^{\beta}usu^{s}, x ∈\inℝn\mathbb{R}^{n}, u , v ¿ 0 in ℝn\mathbb{R}^{n}, lim|x|→+∞\lim_{|x|\rightarrow+\infty} u ( x ) = lim|x|→+∞\lim_{|x|\rightarrow+\infty} v ( x )=0, where α,β0{\nu:=(1-\alpha)(1-\beta)-rs>0}, and the functions a1a_{1}, a2a_{2} are nonnegative in ?locγ⁢(ℝn){\mathcal{C}^{\gamma}_{\mathrm{loc}}(\mathbb{R}^{n})} (0¡γ¡1) and satisfy some appropriate assumptions related to Karamata regular variation theory.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000720ZK.pdf 663KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次