期刊论文详细信息
Advances in Nonlinear Analysis
Ground state solutions for the Hénon prescribed mean curvature equation
article
Antonio Azzollini1 
[1] Dipartimento di Matematica, Università degli Studi della Basilicata
关键词: Quasilinear elliptic equations;    mean curvature operator;    ODEs techniques;   
DOI  :  10.1515/anona-2017-0233
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

In this paper, we consider the analogous of the Hénon equation for the prescribed mean curvature problem in ℝ N {{\mathbb{R}^{N}}} , both in the Euclidean and in the Minkowski spaces. Motivated by the studies of Ni and Serrin [W. M. Ni and J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential equations, Att. Convegni Lincei 77 1985, 231–257], we have been interested in finding the relations between the growth of the potential and that of the local nonlinearity in order to prove the nonexistence of a radial ground state. We also present a partial result on the existence of a ground state solution in the Minkowski space.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000676ZK.pdf 628KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次