Advances in Nonlinear Analysis | |
A fractional Kirchhoff problem involving a singular term and a critical nonlinearity | |
article | |
Alessio Fiscella1  | |
[1] Universidade Estadual de Campinas | |
关键词: Kirchhoff-type problems; fractional Laplacian; singularities; critical nonlinearities; perturbation methods; | |
DOI : 10.1515/anona-2017-0075 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
In this paper, we consider the following critical nonlocal problem: { M ( ∬ ℝ 2 N | u ( x ) - u ( y ) | 2 | x - y | N + 2 s ? x ? y ) ( - Δ ) s u = λ u γ + u 2 s * - 1 in Ω , u > 0 in Ω , u = 0 in ℝ N ∖ Ω , \left\{\begin{aligned} &\displaystyle M\bigg{(}\iint_{\mathbb{R}^{2N}}\frac{% \lvert u(x)-u(y)\rvert^{2}}{\lvert x-y\rvert^{N+2s}}\,dx\,dy\biggr{)}(-\Delta)% ^{s}u=\frac{\lambda}{u^{\gamma}}+u^{2^{*}_{s}-1}&&\displaystyle\phantom{}\text% {in }\Omega,\\ \displaystyle u&\displaystyle>0&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. where Ω is an open bounded subset of ℝ N {\mathbb{R}^{N}} with continuous boundary, dimension N > 2 s {N>2s} with parameter s ∈ ( 0 , 1 ) {s\in(0,1)} , 2 s * = 2 N / ( N - 2 s ) {2^{*}_{s}=2N/(N-2s)} is the fractional critical Sobolev exponent, λ > 0 {\lambda>0} is a real parameter, γ ∈ ( 0 , 1 ) {\gamma\in(0,1)} and M models a Kirchhoff-type coefficient, while ( - Δ ) s {(-\Delta)^{s}} is the fractional Laplace operator. In particular, we cover the delicate degenerate case, that is, when the Kirchhoff function M is zero at zero. By combining variational methods with an appropriate truncation argument, we provide the existence of two solutions.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000647ZK.pdf | 707KB | download |