| Advances in Nonlinear Analysis | |
| On a class of fully nonlinear parabolic equations | |
| article | |
| Stanislav Antontsev1  Sergey Shmarev3  | |
| [1] Lavrentyev Institute of Hydrodynamics of SB RAS;University of Lisbon;Universidad de Oviedo | |
| 关键词: Fully nonlinear parabolic equation; strong solution; asymptotic behavior; extinction in a finite time; | |
| DOI : 10.1515/anona-2016-0055 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
We study the homogeneous Dirichlet problem for the fully nonlinear equation u t = | Δ u | m - 2 Δ u - d | u | σ - 2 u + f in Q T = Ω × ( 0 , T ) , u_{t}=|\Delta u|^{m-2}\Delta u-d|u|^{\sigma-2}u+f\quad\text{in ${Q_{T}=\Omega% \times(0,T)}$,} with the parameters m > 1 {m>1} , σ > 1 {\sigma>1} and d ≥ 0 {d\geq 0} . At the points where Δ u = 0 {\Delta u=0} , the equation degenerates if m > 2 {m>2} , or becomes singular if m ∈ ( 1 , 2 ) {m\in(1,2)} . We derive conditions of existence and uniqueness of strong solutions, and study the asymptotic behavior of strong solutions as t → ∞ {t\to\infty} . Sufficient conditions for exponential or power decay of ∥ ∇ u ( t ) ∥ 2 , Ω {\|\nabla u(t)\|_{2,\Omega}} are derived. It is proved that for certain ranges of the exponents m and σ, every strong solution vanishes in a finite time.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200000620ZK.pdf | 736KB |
PDF