期刊论文详细信息
Advances in Nonlinear Analysis | |
On the Hölder continuity for a class of vectorial problems | |
article | |
Giovanni Cupini1  Matteo Focardi2  Francesco Leonetti3  Elvira Mascolo2  | |
[1] Dipartimento di Matematica, Università di Bologna;Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze;Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università di L’Aquila | |
关键词: Holder; continuity; regularity; vectorial; minimizer; variational; integral; | |
DOI : 10.1515/anona-2020-0039 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
In this paper we prove local Hölder continuity of vectorial local minimizers of special classes of integral functionals with rank-one and polyconvex integrands. The energy densities satisfy suitable structure assumptions and may have neither radial nor quasi-diagonal structure. The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude about the Hölder continuity. In the final section, we provide some non-trivial applications of our results.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000584ZK.pdf | 444KB | download |