| Advances in Nonlinear Analysis | |
| Homoclinics for singular strong force Lagrangian systems | |
| article | |
| Marek Izydorek1  Joanna Janczewska1  Jean Mawhin2  | |
| [1] Faculty of Applied Physics and Mathematics, Gdańsk University of Technology;Département de mathématique, Université Catholique de Louvain | |
| 关键词: homoclinic solution; homotopy class; Lagrangian system; strong force; rotation number (winding number); | |
| DOI : 10.1515/anona-2020-0018 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
We study the existence of homoclinic solutions for a class of Lagrangian systems ddt $\begin{array}{} \frac{d}{dt} \end{array} $(∇ Φ ( u̇ ( t ))) + ∇ u V ( t , u ( t )) = 0, where t ∈ ℝ, Φ : ℝ 2 → [0, ∞) is a G -function in the sense of Trudinger, V : ℝ × (ℝ 2 ∖ { ξ }) → ℝ is a C 1 -smooth potential with a single well of infinite depth at a point ξ ∈ ℝ 2 ∖ {0} and a unique strict global maximum 0 at the origin. Under a strong force condition around the singular point ξ , via minimization of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions u ± : ℝ → ℝ 2 ∖ { ξ }.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200000567ZK.pdf | 392KB |
PDF