期刊论文详细信息
Advances in Nonlinear Analysis
Continuity results for parametric nonlinear singular Dirichlet problems
article
Yunru Bai1  Dumitru Motreanu2  Shengda Zeng1 
[1] Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science;Département de Mathématiques, Université de Perpignan
关键词: Parametric singular elliptic equation;    p-Laplacian;    smallest solution;    sequential continuity;    monotonicity;   
DOI  :  10.1515/anona-2020-0005
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter λ > 0 that was considered in [32]. Denoting by S λ the set of positive solutions of the problem corresponding to the parameter λ , we establish the following essential properties of S λ : there exists a smallest element uλ∗ $\begin{array}{} u_\lambda^* \end{array}$ in S λ , and the mapping λ ↦ uλ∗ $\begin{array}{} u_\lambda^* \end{array}$ is (strictly) increasing and left continuous; the set-valued mapping λ ↦ S λ is sequentially continuous.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000554ZK.pdf 413KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次