期刊论文详细信息
| Advances in Nonlinear Analysis | |
| Continuity results for parametric nonlinear singular Dirichlet problems | |
| article | |
| Yunru Bai1  Dumitru Motreanu2  Shengda Zeng1  | |
| [1] Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science;Département de Mathématiques, Université de Perpignan | |
| 关键词: Parametric singular elliptic equation; p-Laplacian; smallest solution; sequential continuity; monotonicity; | |
| DOI : 10.1515/anona-2020-0005 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter λ > 0 that was considered in [32]. Denoting by S λ the set of positive solutions of the problem corresponding to the parameter λ , we establish the following essential properties of S λ : there exists a smallest element uλ∗ $\begin{array}{} u_\lambda^* \end{array}$ in S λ , and the mapping λ ↦ uλ∗ $\begin{array}{} u_\lambda^* \end{array}$ is (strictly) increasing and left continuous; the set-valued mapping λ ↦ S λ is sequentially continuous.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200000554ZK.pdf | 413KB |
PDF