| Advances in Nonlinear Analysis | |
| Liouville property of fractional Lane-Emden equation in general unbounded domain | |
| article | |
| Ying Wang1  Yuanhong Wei2  | |
| [1] Department of Mathematics, Jiangxi Normal University;School of Mathematics, Jilin University | |
| 关键词: Fractional Laplacian; Lane-Emden equation; Nonexistence; | |
| DOI : 10.1515/anona-2020-0147 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
Our purpose of this paper is to consider Liouville property for the fractional Lane-Emden equation (− Δ )α u=upinΩ ,u=0inRN∖ Ω , $$\begin{array}{} \displaystyle (-{\it\Delta})^\alpha u = u^p\quad {\rm in}\quad {\it\Omega},\qquad u = 0\quad {\rm in}\quad \mathbb{R}^N\setminus {\it\Omega}, \end{array}$$ where α ∈ (0, 1), N ≥ 1, p > 0 and Ω ⊂ ℝ N –1 × [0, +∞) is an unbounded domain satisfying that Ω t := { x ′ ∈ ℝ N –1 : ( x ′, t ) ∈ Ω } with t ≥ 0 has increasing monotonicity, that is, Ω t ⊂ Ω t ′ for t ′ ≥ t . The shape of Ω ∞ := lim t →∞ Ω t in ℝ N –1 plays an important role to obtain the nonexistence of positive solutions for the fractional Lane-Emden equation.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200000493ZK.pdf | 339KB |
PDF