期刊论文详细信息
Advances in Nonlinear Analysis
Liouville property of fractional Lane-Emden equation in general unbounded domain
article
Ying Wang1  Yuanhong Wei2 
[1] Department of Mathematics, Jiangxi Normal University;School of Mathematics, Jilin University
关键词: Fractional Laplacian;    Lane-Emden equation;    Nonexistence;   
DOI  :  10.1515/anona-2020-0147
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

Our purpose of this paper is to consider Liouville property for the fractional Lane-Emden equation (− Δ )α u=upinΩ ,u=0inRN∖ Ω , $$\begin{array}{} \displaystyle (-{\it\Delta})^\alpha u = u^p\quad {\rm in}\quad {\it\Omega},\qquad u = 0\quad {\rm in}\quad \mathbb{R}^N\setminus {\it\Omega}, \end{array}$$ where α ∈ (0, 1), N ≥ 1, p > 0 and Ω ⊂ ℝ N –1 × [0, +∞) is an unbounded domain satisfying that Ω t := { x ′ ∈ ℝ N –1 : ( x ′, t ) ∈ Ω } with t ≥ 0 has increasing monotonicity, that is, Ω t ⊂ Ω t ′ for t ′ ≥ t . The shape of Ω ∞ := lim t →∞ Ω t in ℝ N –1 plays an important role to obtain the nonexistence of positive solutions for the fractional Lane-Emden equation.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000493ZK.pdf 339KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次