期刊论文详细信息
| Advances in Nonlinear Analysis | |
| Gradient estimate of a variable power for nonlinear elliptic equations with Orlicz growth | |
| article | |
| Shuang Liang1  Shenzhou Zheng1  | |
| [1] Department of Mathematics, Beijing Jiaotong University | |
| 关键词: Nonlinear elliptic equations; Orlicz growth; Lorentz estimate of the variable power; log-Hölder continuity; (δ; R0)-vanishing of (A; Ω); | |
| DOI : 10.1515/anona-2020-0121 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: De Gruyter | |
PDF
|
|
【 摘 要 】
In this paper, we prove a global Calderón-Zygmund type estimate in the framework of Lorentz spaces for a variable power of the gradients to the zero-Dirichlet problem of general nonlinear elliptic equations with the nonlinearities satisfying Orlicz growth. It is mainly assumed that the variable exponents p ( x ) satisfy the log-Hölder continuity, while the nonlinearity and underlying domain ( A , Ω ) is ( δ , R 0 )-vanishing in x ∈ Ω .
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107200000477ZK.pdf | 520KB |
PDF