Advances in Nonlinear Analysis | |
Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent | |
article | |
Shuai Zhou1  Zhisu Liu2  Jianjun Zhang1  | |
[1] College of Mathematics and Statistics, Chongqing Jiaotong University;Center for Mathematical Sciences, China University of Geosciences | |
关键词: Ground states; Choquard equation; Hardy–Littlewood–Sobolev inequality; critical growth; | |
DOI : 10.1515/anona-2020-0186 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
We are concerned with a class of Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent − Δ u+V(x)u=Iα ∗ [Q(x)|u|N+α N]Q(x)|u|α N− 1u,x∈ RN. $$\begin{array}{} \displaystyle -{\it\Delta} u+V(x)u=\left(I_{\alpha}\ast [Q(x)|u|^{\frac{N+\alpha}{N}}]\right)Q(x)|u|^{\frac{\alpha}{N}-1}u, \quad x\in \mathbb R^N. \end{array}$$ By using variational approaches, we investigate the existence of groundstates relying on the asymptotic behaviour of weighted potentials at infinity. Moreover, non-existence of non-trivial solutions is also considered. In particular, we give a partial answer to some open questions raised in [D.~Cassani, J. Van Schaftingen and J. J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proceedings of the Royal Society of Edinburgh, Section A Mathematics , 150 (2020), 1377–1400].
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000463ZK.pdf | 444KB | download |