期刊论文详细信息
Frontiers in Pediatrics
Machine-Learning vs. Expert-Opinion Driven Logistic Regression Modelling for Predicting 30-Day Unplanned Rehospitalisation in Preterm Babies: A Prospective, Population-Based Study (EPIPAGE 2)
Robert A. Reed1  Jennifer Zeitlin1  Babak Khoshnood1  Héloïse Torchin2  Pierre-Henri Jarreau2  Véronique Pierrat3  Pierre-Yves Ancel4  Andrei S. Morgan5 
[1] Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France;Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France;APHP.5, Service de Médecine et Réanimation Néonatales de Port-Royal, Paris, France;Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France;CHU Lille, Department of Neonatal Medicine, Jeanne de Flandre Lille, France;Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France;Clinical Research Unit, Center for Clinical Investigation P1419, APHP.5, Paris, France;Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France;Elizabeth Garrett Anderson Institute for Womens' Health, University College London (UCL), London, United Kingdom;SAMU 93, SMUR Pédiatrique, CHI André Gregoire, Groupe Hospitalier Universitaire Paris Seine-Saint-Denis, Assistance Publique des Hôpitaux de Paris, Paris, France;
关键词: neonatology;    rehospitalisation;    prediction;    machine-learning;    epidemiology;   
DOI  :  10.3389/fped.2020.585868
来源: Frontiers
PDF
【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107160995845ZK.pdf 677KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:11次