Journal of Advances in Modeling Earth Systems | |
Self‐consistency tests of large‐scale dynamics parameterizations for single‐column modeling | |
Jacob P. Edman1  | |
[1] Department of Earth and Planetary Science, University of California, Berkeley, California, USA | |
关键词: single‐column modeling; WPG; WTG; large‐scale dynamics; convection; gravity waves; | |
DOI : 10.1002/2014MS000378 | |
来源: Wiley | |
【 摘 要 】
Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, but WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.Abstract
【 授权许可】
CC BY-NC-ND
© 2015. The Authors.
Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107150014822ZK.pdf | 1123KB | download |