Journal of Cellular and Molecular Medicine | |
The effect of myosin RLC phosphorylation in normal and cardiomyopathic mouse hearts | |
Priya Muthu1  Katarzyna Kazmierczak1  Michelle Jones1  | |
[1] Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA | |
关键词: cardiac hypertrophy; mutation; myosin regulatory light chain; muscle fibres; myosin light chain kinase; phosphorylation; transgenic mice; | |
DOI : 10.1111/j.1582-4934.2011.01371.x | |
来源: Wiley | |
【 摘 要 】
Phosphorylation of the myosin regulatory light chain (RLC) by Ca2+-calmodulin–activated myosin light chain kinase (MLCK) is known to be essential for the inotropic function of the heart. In this study, we have examined the effects of MLCK-phosphorylation of transgenic (Tg) mouse cardiac muscle preparations expressing the D166V (aspartic acid to valine)–RLC mutation, identified to cause familial hypertrophic cardiomyopathy with malignant outcomes. Our previous work with Tg-D166V mice demonstrated a large increase in the Ca2+ sensitivity of contraction, reduced maximal ATPase and force and a decreased level of endogenous RLC phosphorylation. Based on studies demonstrating the beneficial and/or protective effects of cardiac myosin phosphorylation for heart function, we hypothesized that an ex vivo phosphorylation of Tg-D166V cardiac muscle may rescue the detrimental contractile phenotypes observed earlier at the level of single myosin molecules and in Tg-D166V papillary muscle fibres. We showed that MLCK-induced phosphorylation of Tg-D166V cardiac myofibrils and muscle fibres was able to increase the reduced myofibrillar ATPase and reverse an abnormally increased Ca2+ sensitivity of force to the level observed for Tg-wild-type (WT) muscle. However, in contrast to Tg-WT, which displayed a phosphorylation-induced increase in steady-state force, the maximal tension in Tg-D166V papillary muscle fibres decreased upon phosphorylation. With the exception of force generation data, our results support the notion that RLC phosphorylation works as a rescue mechanism alleviating detrimental functional effects of a disease causing mutation. Further studies are necessary to elucidate the mechanism of this unexpected phosphorylation-induced decrease in maximal tension in Tg-D166V–skinned muscle fibres.Abstract
【 授权许可】
Unknown
© 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107150012533ZK.pdf | 382KB | download |