Ecology and Evolution | |
Genome‐wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore | |
Astrid Vik Stronen8  Bogumiᐪ Jᆝrzejewska3  Cino Pertoldi8  Ditte Demontis4  Ettore Randi8  Magdalena Niedziałkowska3  Tomasz Borowik3  Vadim E. Sidorovich1  Josip Kusak6  Ilpo Kojola7  Alexandros A. Karamanlidis2  Janis Ozolins5  Vitalii Dumenko9  | |
[1] Institute of Zoology, Scientific and Practical Centre for Biological Resources, National Academy of Science of Belarus, Minsk, Belarus;ARCTUROS, Civil Society for the Protection and Management of Wildlife and the Natural Environment, Aetos, Greece;Mammal Research Institute, Polish Academy of Sciences, Bialowieza, Poland;Department of Human Genetics, University of Aarhus, Aarhus, Denmark;Latvian State Forest Research Institute “Silava”, Salaspils, Latvia;Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia;Natural Resources Institute Finland, Rovaniemi, Finland;Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, Aalborg Øst, Denmark;Biosphere Reserve Askania Nova, Askania-Nova, Chaplynka District, Kherson Region, Ukraine | |
关键词: CanineHD BeadChip microarray; Canis lupus; environmental selection; genome‐wide association study; single nucleotide polymorphism; wolf; | |
DOI : 10.1002/ece3.1695 | |
来源: Wiley | |
【 摘 要 】
Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north–south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric-Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.Abstract
【 授权许可】
CC BY
© 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107150011555ZK.pdf | 752KB | download |