期刊论文详细信息
Ecology and Evolution
Phosphogenesis in the 2460 and 2728 million‐year‐old banded iron formations as evidence for biological cycling of phosphate in the early biosphere
Yi-Liang Li1  Si Sun1 
[1] Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
关键词: Banded iron formation;    great oxidation event;    iron oxide;    phosphate;    Precambrian;    primary productivity;   
DOI  :  10.1002/ece3.443
来源: Wiley
PDF
【 摘 要 】

Abstract

The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ~2.0–2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean–Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

【 授权许可】

CC BY   
© 2012 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150011385ZK.pdf 2880KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:2次