期刊论文详细信息
Ecology and Evolution
One‐year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature
Sophie Martin2  Stéphanie Cohu1  Céline Vignot1  Guillaume Zimmerman1 
[1] CNRS-INSU, Laboratoire d'Océanographie de Villefranche-sur-Mer, Villefranche-sur-Mer Cedex, France;Université Pierre et Marie Curie - Paris 6, Observatoire Océanologique de Villefranche, Villefranche-sur-Mer Cedex, France
关键词: Calcification;    coralligenous habitat;    coralline algae;    global warming;    irradiance;    ocean acidification;    pCO 2;    photosynthesis;    respiration;    temperature;   
DOI  :  10.1002/ece3.475
来源: Wiley
PDF
【 摘 要 】

Abstract

The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade-off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.

【 授权许可】

CC BY   
© 2013 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150011266ZK.pdf 1899KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:4次