期刊论文详细信息
Ecology and Evolution
110 Years of change in urban tree stocks and associated carbon storage
Daniel F. Díaz-Porras1  Kevin J. Gaston2 
[1] Department of Animal and Plant Sciences, University of Sheffield, Sheffield, U.K;Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, U.K
关键词: Carbon storage;    ecosystem services;    large trees;    old trees;    repeat photography;    street trees;    urban greening;    urban tree planting;    urbanization;   
DOI  :  10.1002/ece3.1017
来源: Wiley
PDF
【 摘 要 】

Abstract

Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s–2010, and by 100% from the 1950s–2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as revisions to tree preservation orders, to increase the retention of such trees as they mature.

【 授权许可】

CC BY   
© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150010992ZK.pdf 920KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:5次