期刊论文详细信息
MicrobiologyOpen
Protective role of bacillithiol in superoxide stress and Fe–S metabolism in Bacillus subtilis
Zhong Fang1 
[1] Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
关键词: Bacillithiol;    dehydratase;    Fe–S cluster;    Suf;    superoxide stress;   
DOI  :  10.1002/mbo3.267
来源: Wiley
PDF
【 摘 要 】

Abstract

Glutathione (GSH) serves as the prime thiol in most organisms as its depletion increases antibiotic and metal toxicity, impairs oxidative stress responses, and affects Fe and Fe–S cluster metabolism. Many gram-positive bacteria lack GSH, but instead produce other structurally unrelated yet functionally equivalent thiols. Among those, bacillithiol (BSH) has been recently identified in several low G+C gram-positive bacteria. In this work, we have explored the link between BSH and Fe–S metabolism in Bacillus subtilis. We have identified that B. subtilis lacking BSH is more sensitive to oxidative stress (paraquat), and metal toxicity (Cu(I) and Cd(II)), but not H2O2. Furthermore, a slow growth phenotype of BSH null strain in minimal medium was observed, which could be recovered upon the addition of selected amino acids (Leu/Ile and Glu/Gln), supplementation of iron, or chemical complementation with BSH disulfide (BSSB) to the growth medium. Interestingly, Fe–S cluster containing isopropylmalate isomerase (LeuCD) and glutamate synthase (GOGAT) showed decreased activities in BSH null strain. Deficiency of BSH also resulted in decreased levels of intracellular Fe accompanied by increased levels of manganese and altered expression levels of Fe–S cluster biosynthetic SUF components. Together, this study is the first to establish a link between BSH and Fe–S metabolism in B. subtilis.

【 授权许可】

CC BY   
© 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150007787ZK.pdf 1697KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:4次