期刊论文详细信息
Physiological Reports
Cardiac adaptations from 4 weeks of intensity‐controlled vigorous exercise are lost after a similar period of detraining
Cheryl D. Waring2  Beverley J. Henning2  Andrew J. Smith3  Bernardo Nadal-Ginard3  Daniele Torella1 
[1] Laboratory of Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy;Stem Cell and Regenerative Biology Unit (BioStem), Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK;Centre of Human & Aerospace Physiological Sciences and Centre for Stem Cells & Regenerative Medicine, Faculty of Medicine & Life Sciences, King's College London, London, UK
关键词: Cardiac stem/progenitor cells;    detraining;    physiological remodeling;   
DOI  :  10.14814/phy2.12302
来源: Wiley
PDF
【 摘 要 】

Abstract

Intensity-controlled (relative to VO2max) treadmill exercise training in adult rats results in the activation and ensuing differentiation of endogenous c-kitpos cardiac stem/progenitor cells (eCSCs) into newly formed cardiomyocytes and capillaries. Whether these training-induced adaptations persist following detraining is undetermined. Twelve male Wistar rats (~230 g) were exercised at 80–85% of their VO2max for 30 min day−1, 4 days week−1 for 4 weeks (TR; n = 6), followed by 4 weeks of detraining (DTR; n = 6). Twelve untrained rats acted as controls (CTRL). Exercise training significantly enhanced VO2max (11.34 mL kg−1 min−1) and wet heart weight (29%) above CTRL (P < 0.05). Echocardiography revealed that exercise training increased LV mass (~32%), posterior and septal wall thickness (~15%), ejection fraction and fractional shortening (~10%) compared to CTRL (P < 0.05). Cardiomyocyte diameter (17.9 ± 0.1 μm vs. 14.9 ± 0.6 μm), newly formed (BrdUpos/Ki67pos) cardiomyocytes (7.2 ± 1.3%/1.9 ± 0.7% vs. 0.2 ± 0.1%/0.1 ± 0.1%), total cardiomyocyte number (45.6 ± 0.6 × 106 vs. 42.5 ± 0.4 × 106), c-kitpos eCSC number (884 ± 112 per 106 cardiomyocytes vs. 482 ± 132 per 106 cardiomyocytes), and capillary density (4123 ± 227 per mm2 vs. 2117 ± 118 per mm2) were significantly greater in the LV of trained animals (P < 0.05) than CTRL. Detraining removed the stimulus for c-kitpos eCSC activation (640 ± 98 per 106 cardiomyocytes) and resultant cardiomyocyte hyperplasia (0.4 ± 0.3% BrdUpos/0.2 ± 0.2% Ki67pos cardiomyocytes). Capillary density (3673 ± 374 per mm2) and total myocyte number (44.7 ± 0.5 × 106) remained elevated following detraining, but cardiomyocyte hypertrophy (15.0 ± 0.4 μm) was lost, resulting in a reduction of anatomical (wall thickness ~4%; LV mass ~10% and cardiac mass ~8%, above CTRL) and functional (EF & FS ~2% above CTRL) parameters gained through exercise training. These findings demonstrate that cardiac adaptations, produced by 4 weeks of intensity-controlled exercise training are lost after a similar period of detraining.

【 授权许可】

CC BY   
© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150006185ZK.pdf 1755KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次