Physiological Reports | |
Sympathetic vasomotor outflow and blood pressure increase during exercise with expiratory resistance | |
Keisho Katayama2  Yuka Itoh3  Mitsuru Saito1  Teruhiko Koike2  | |
[1] Faculty of Psychological and Physical Science, Aichigakuin University, Nisshin, Japan;Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan;Graduate School of Medicine, Nagoya University, Nagoya, Japan | |
关键词: Dynamic leg exercise; metaboreflex; respiratory muscle; sympathetic outflow; | |
DOI : 10.14814/phy2.12421 | |
来源: Wiley | |
【 摘 要 】
The purpose of the present study was to elucidate the effect of increasing expiratory muscle work on sympathetic vasoconstrictor outflow and arterial blood pressure (BP) during dynamic exercise. We hypothesized that expiratory muscle fatigue would elicit increases in sympathetic vasomotor outflow and BP during submaximal exercise. The subjects performed four submaximal exercise tests; two were maximal expiratory pressure (PEmax) tests and two were muscle sympathetic nerve activity (MSNA) tests. In each test, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and voluntary hyperpnoea with and without expiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were set at 0.5 sec)]. PEmax was estimated before and immediately after exercises. MSNA was recorded via microneurography of the right median nerve at the elbow. PEmax decreased following exercise with expiratory resistive breathing, while no change was found without resistance. A progressive increase in MSNA burst frequency (BF) appeared during exercise with expiratory resistance (MSNA BF, without resistance: +22 ± 5%, with resistance: +44 ± 8%, P < 0.05), accompanied by an augmentation of BP (mean BP, without resistance: +5 ± 2%, with resistance: +29 ± 5%, P < 0.05). These results suggest that an enhancement of expiratory muscle activity leads to increases in sympathetic vasomotor outflow and BP during dynamic leg exercise.Abstract
【 授权许可】
CC BY
© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107150006045ZK.pdf | 528KB | download |