期刊论文详细信息
Physiological Reports
Hypoxia reduces placental mTOR activation in a hypoxia‐induced model of intrauterine growth restriction (IUGR)
Rebecca Kimball1  Montana Wayment1  Daniel Merrill1  Tyler Wahlquist1  Paul R. Reynolds1 
[1] Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
关键词: Hypoxia;    IUGR;    mTOR;    placenta;    trophoblast;   
DOI  :  10.14814/phy2.12651
来源: Wiley
PDF
【 摘 要 】

Abstract

Mammalian target of rapamycin (mTOR) is a protein that regulates cell growth in response to altered nutrient and growth factor availability. Our objective was to assess activated mTOR and its intracellular intermediates p70, and 4EBP1 in placental and invasive trophoblast cells in a hypoxia-induced model of intrauterine growth restriction (IUGR) in rats. Rats were treated with hypoxia (9%) for 4 days. Placental and fetal weights, as well as conceptus numbers were recorded at the time of necropsy. Immunohistochemistry was used to determine the level of trophoblast invasion and apoptosis. Western blots were used to determine the activation of mTOR, p70, and 4EBP1 in the placenta and the uterine mesometrial compartment. We observed (1) decreased placental (21%) and fetal (24%) weights (P < 0.05); (2) decreased trophoblast invasion; (3) significantly increased active 4EBP1 (28%; P < 0.05) in invasive trophoblast cells yet no changes in the activation of mTOR and p70 proteins; and (4) a significant decrease in the activation of mTOR (48%; P < 0.05) with no differences in p70 or 4EBP1 activation in the placenta. We conclude that the development of IUGR is correlated with decreased activation of the mTOR protein in the placenta and increased 4EBP1 activity in the invading trophoblast. These results provide important insight into the physiological relevance of these pathways. Furthermore, modification of these and other related targets during gestation may alleviate IUGR severity.

【 授权许可】

CC BY   
© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150005805ZK.pdf 2182KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次