期刊论文详细信息
Brain and Behavior
Residual vectors for Alzheimer disease diagnosis and prognostication
1 
关键词: ADNI;    Alzheimer disease;    Bioinformatics;    Mild cognitive impairment;    PET scan;   
DOI  :  10.1002/brb3.19
来源: Wiley
PDF
【 摘 要 】

Abstract

Alzheimer disease (AD) is an increasingly prevalent neurodegenerative condition and a looming socioeconomic threat. A biomarker for the disease could make the process of diagnosis easier and more accurate, and accelerate drug discovery. The current work describes a method for scoring brain images that is inspired by fundamental principles from information retrieval (IR), a branch of computer science that includes the development of Internet search engines. For this research, a dataset of 254 baseline 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) scans was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). For a given contrast, a subset of scans (nine of every 10) was used to compute a residual vector that typified the difference, at each voxel, between the two groups being contrasted. Scans that were not used for computing the residual vector (the remaining one of 10 scans) were then compared to the residual vector using a cosine similarity metric. This process was repeated sequentially, each time generating cosine similarity scores on 10% of the FDG-PET scans for each contrast. Statistical analysis revealed that the scores were significant predictors of functional decline as measured by the Functional Activities Questionnaire (FAQ). When logistic regression models that incorporated these scores were evaluated with leave-one-out cross-validation, cognitively normal controls were discerned from AD with sensitivity and specificity of 94.4% and 84.8%, respectively. Patients who converted from mild cognitive impairment (MCI) to AD were discerned from MCI nonconverters with sensitivity and specificity of 89.7% and 62.9%, respectively, when FAQ scores were brought into the model. Residual vectors are easy to compute and provide a simple method for scoring the similarity between an FDG-PET scan and sets of examples from a given diagnostic group. The method is readily generalizable to any imaging modality. Further interdisciplinary work between IR and clinical neuroscience is warranted.

【 授权许可】

CC BY-NC   
©2011 The Authors. Brain and Behavior published by Blackwell Publishing Ltd.

Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

【 预 览 】
附件列表
Files Size Format View
RO202107150001046ZK.pdf 448KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次