Frontiers in Energy Research | |
Low-Cost Radiant Heater for Rapid Response, High-Temperature Heating | |
Xiang Gao1  Ellen B. Stechel2  Ivan Ermanoski3  Matt von Boecklin4  | |
[1] ASU LightWorks®, Arizona State University, Tempe, AZ, United States;ASU LightWorks®, Arizona State University, Tempe, AZ, United States;School of Molecular Sciences, Arizona State University, Tempe, AZ, United States;ASU LightWorks®, Arizona State University, Tempe, AZ, United States;School of Sustainability, Arizona State University, Tempe, AZ, United States;Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA, United States; | |
关键词: high temperature; renewable energy; radiant electric heater; cost-effective; rapid response; thermochemistry; | |
DOI : 10.3389/fenrg.2021.652203 | |
来源: Frontiers | |
【 摘 要 】
High-temperature processing has an irreplaceable role in many research and industrial applications. Despite remarkable development spanning over a century, the pursuit of even higher thermal flux density and more rapid thermal transients has not slowed down. As part of the ongoing energy evolution, many industrial applications are transitioning from direct combustion of fossil fuels as primary energy sources to increasing electrification, capable of adapting to renewable power grids. Thus, there is an emerging need for electrical heaters that can replace burners and supply the heat demand, especially at the highest temperatures. In this study, we report on a radiant heater design that can achieve cyclic heating/cooling rates of up to 400 K min–1 and a temperature range in excess of 1,800 K, comparable to those of commercial infrared gold image furnaces, at high surface and volumetric power densities. The heater consists of a modular unit of incandescent tungsten filament and is enclosed in an evacuated ceramic envelope, chemically inert, tolerant of thermal shock, and impervious to gasses. The material and manufacture cost of such heaters, which is estimated at ∼$0.05/W, is less than 0.03% of that for infrared gold image furnaces, which is at >$2/W. Tests of more than 10,000 demanding cycles (high temperature and high heating/cooling rate) over 350 h of total operational time and in different temperature ranges confirm the robust performance of radiant heater prototypes. The design is widely applicable to high-temperature reactor and furnace designs. In thermochemistry research and practice, these radiant heaters could offer multiple benefits compared to solar simulators, lasers, infrared gold furnaces, ceramic heaters, or direct concentration of solar input.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107139679071ZK.pdf | 1212KB | download |