期刊论文详细信息
Frontiers in Physics
Importance of Viscosity Contrast for the Motion of Erythrocytes in Microcapillaries
Johannes Mauer1  Gerhard Gompper1  Anil K. Dasanna1  Dmitry A. Fedosov2 
[1] Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany;null;
关键词: red blood cell;    channel flow;    cell shape;    cell dynamics;    cell deformation;    mesoscopic simulation;   
DOI  :  10.3389/fphy.2021.666913
来源: Frontiers
PDF
【 摘 要 】

The dynamics and deformation of red blood cells (RBCs) in microcirculation affect the flow resistance and transport properties of whole blood. One of the key properties that can alter RBC dynamics in flow is the contrast λ (or ratio) of viscosities between RBC cytosol and blood plasma. Here, we study the dependence of RBC shape and dynamics on the viscosity contrast in tube flow, using mesoscopic hydrodynamics simulations. State diagrams of different RBC dynamical states, including tumbling cells, parachutes, and tank-treading slippers, are constructed for various viscosity contrasts and wide ranges of flow rates and tube diameters (or RBC confinements). Despite similarities in the classification of RBC behavior for different viscosity contrasts, there are notable differences in the corresponding state diagrams. In particular, the region of parachutes is significantly larger for λ = 1 in comparison to λ = 5. Furthermore, the viscosity contrast strongly affects the tumbling-to-slipper transition, thus modifying the regions of occurrence of these states as a function of flow rate and RBC confinement. Also, an increase in cytosol viscosity leads to a reduction in membrane tension induced by flow stresses. Physical mechanisms that determine these differences in RBC dynamical states as a function of λ are discussed.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107138772014ZK.pdf 1063KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:4次