【 摘 要 】
This Letter introduces a feasibility study of a scanning system for applications in biomedical bone imaging operating in the microwave range 0.5–4 GHz. Mechanical uncertainties and data acquisition time are minimised by using a fully automated scanner that controls two antipodal Vivaldi antennas. Accurate antenna positioning and synchronisation with data acquisition enables a rigorous proof-of-concept for the microwave imaging procedure of a multi-layer phantom including skin, fat, muscle and bone tissues. The presence of a suitable coupling medium enables antenna miniaturisation and mitigates the impedance mismatch between antennas and phantom. The three-dimensional image of tibia and fibula is successfully reconstructed by scanning the multi-layer phantom due to the distinctive dielectric contrast between target and surrounding tissues. These results show the viability of a microwave bone imaging technology which is low cost, portable, non-ionising, and does not require specially trained personnel. In fact, as no a-priori characterisation of the antenna is required, the image formation procedure is very conveniently simplified.
【 授权许可】
CC BY|CC BY-ND|CC BY-NC|CC BY-NC-ND
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107100001036ZK.pdf | 374KB | download |