期刊论文详细信息
Biotechnology for Biofuels
Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources
T. K. Pham1  J. Pandhal1  N. Couto1  C. A. Evans1  E. Hounslow1  T. Sydney2  D. James Gilmour3  P. C. Wright4 
[1] Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK;Department of Chemistry, University of Sheffield, S3 7HF, Sheffield, UK;Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK;University of Southampton, University Road, SO17 1BJ, Southampton, UK;
关键词: Quantitative proteomics;    Chlamydomonas nivalis;    Chlamydomonas reinhardtii;    Fatty acid production;    Salt stress;    Biofuel;   
DOI  :  10.1186/s13068-021-01970-6
来源: Springer
PDF
【 摘 要 】

BackgroundChlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress.ResultsEach strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (− 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (− 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148.ConclusionsThese differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107079685413ZK.pdf 1611KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:4次