期刊论文详细信息
International Journal of Implant Dentistry
Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants
Young-Kwon Seo1  Jeong-Hun Nam2  Oh-Jun Kwon2  Akram Abdo Almansoori3  Jong-Ho Lee4  Hae-Ryong Song5 
[1] Department of Chemical and Biochemical Engineering, College of Engineering, Dongkuk University, Seoul, Korea;Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea;Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea;Craniofacial Tissue Engineering and Stem Cells, Faculty of Dentistry, McGill University, Montreal, Canada;Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea;Innovation Research and Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea;Department of Orthopedics and Dwarfism Clinic, Korea University Guro Hospital, Seoul, Korea;
关键词: Mesenchymal stem cells;    Platelet-rich plasma;    Polycaprolactone;    β-Tricalcium phosphate;    Guided bone regeneration;    Dental implants;   
DOI  :  10.1186/s40729-021-00317-y
来源: Springer
PDF
【 摘 要 】

BackgroundFinding a material that supports bone regeneration is the concern for many investigators. We supposed that a composite scaffold of poly(ε) caprolactone and β-tricalcium phosphate (PCL-TCP) would entail desirable characteristics of biocompatibility, bioresorbability, rigidity, and osteoconductivity for a proper guided bone regeneration. Furthermore, the incorporation of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) would boost the bone regeneration. We conducted this study to evaluate the bone regeneration capacity of PCL-TCP scaffold that is loaded with MSCs and PRP.Materials and methodsFive miniature pigs received 6 implants in 6 created-mandibular bony defects in the right and left lower premolar areas. The bony defects were managed according to the following three groups: the PCL-TCP scaffold loaded with MSCs and PRP (MSCs+PRP+PCL-TCP) group (n = 10), PCL-TCP scaffold loaded with PRP (PRP+PCL-TCP) group (n = 10), and PCL-TCP scaffold group (n = 10). After 12 weeks, the bone regeneration was assessed using fluorochrome bone labeling, μCT bone morphogenic analysis, and histomorphometric analysis.ResultsAll of the three groups supported the bone regeneration around the dental implants. However, the PCL-TCP scaffold loaded with MSCs and PRP (MSCs+PRP+PCL-TCP) group showed non-significant higher bone surface, bone specific surface, and bone surface density than the other two groups as revealed by the μCT bone morphogenic analysis. Histologically, the same group revealed higher bone-implant contact ratio (BIC) (p = 0.017) and new bone height formation (NBH, mm) (p = 0.0097) with statistically significant difference compared to the PCL-TCP scaffold group.ConclusionsPCL-TCP scaffold is compatible for bone regeneration in bone defects surrounding dental implants. Moreover, the incorporation of MSCs and PRP optimized the bone regeneration process with respect to the rate of scaffold replacement, the height of the regenerated bone, and implant stability.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107067303368ZK.pdf 8196KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次