期刊论文详细信息
BMC Medical Informatics and Decision Making
Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
Pravin Amin1  Amine Ali Zeggwagh2  Richard Rezar3  Bernhard Wernly3  Alfonso Muriel4  Marco González5  Andrew Bersten6  Gee Young Suh7  Raphael Romano Bruno8  Christian Jung8  Malte Kelm8  Yuda Sutherasan9  Behrooz Mamandipoor1,10  Venet Osmani1,10  Nicolas Nin1,11  Fekri Abroug1,12  Fernando Ríos1,13  Maria del Carmen Marín1,14  Marco Antonio Soares1,15  Andrés Esteban1,16  Fernando Frutos-Vivar1,16  Oscar Peñuelas1,16  Manuel Jibaja1,17  Lorenzo del-Sorbo1,18  Nahit Cakar1,19  Konstantinos Raymondos2,20  Dimitros Matamis2,21  Bin Du2,22  Bruno Valle Pinheiro2,23  Antonio Anzueto2,24  Arnaud W. Thille2,25  Salvatore M. Maggiore2,26 
[1] Bombay Hospital Institute of Medical Sciences, Mumbai, India;Centre Hospitalier Universitarie Ibn Sina - Mohammed V University, Rabat, Morocco;Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020, Salzburg, Austria;Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020, Salzburg, Austria;Unidad de Bioestadística Clinica Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) & Centro de Investigación en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain;Clínica Medellín & Universidad Pontificia Bolivariana, Medellín, Colombia;Department of Critical Care Medicine, Flinders University, Adelaide, South Australia, Australia;Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea;Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany;Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand;Fondazione Bruno Kessler Research Institute, Trento, Italy;Hospital Español, Montevideo, Uruguay;Hospital Fattouma Bourguina, Monastir, Tunisia;Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina;Hospital Regional 1° de Octubre, Instituto de Seguridad Y Servicios Sociales de Los Trabajadores del Estado (ISSSTE), México, DF, México;Hospital Universitario Sao Jose, Belo Horizonte, Brazil;Hospital Universitario de Getafe & Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain;Hospital de Especialidades Eugenio Espejo, Quito, Ecuador;Interdepartmental Division of Critical Care Medicine, Toronto, ON, Canada;Istanbul Faculty of Medicine, Istanbul, Turkey;Medizinische Hochschule Hannover, Hannover, Germany;Papageorgiou Hospital, Thessaloniki, Greece;Peking Union Medical College Hospital, Beijing, People’s Republic of China;Pulmonary Research Laboratory, Federal University of Juiz de Fora, Juiz de Fora, Brazil;South Texas Veterans Health Care System and University of Texas Health Science Center, San Antonio, TX, USA;University Hospital of Poitiers, Poitiers, France;Università Degli Studi G. d’Annunzio Chieti e Pescara, Chieti, Italy;
关键词: Critical care medicine;    Machine learning;    ICU;    Risk stratification;    Mechanical ventilation;   
DOI  :  10.1186/s12911-021-01506-w
来源: Springer
PDF
【 摘 要 】

BackgroundMechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters.MethodsWe performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders.ResultsPredictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders.ConclusionThe RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes.Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107063166459ZK.pdf 1683KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:28次