期刊论文详细信息
Journal of Inflammation
The impact of E-cigarette vaping and vapour constituents on bone health
Simon W. Jones1  Thomas Nicholson1  Aaron Scott1  Matthew Newton Ede2 
[1] Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, B15 2TT, Birmingham, UK;The Royal Orthopaedic Hospital, B31 2AP, Birmingham, UK;
关键词: E-cigarette;    Vaping;    Osteoblasts;    Osteoclasts;    Nicotine;   
DOI  :  10.1186/s12950-021-00283-7
来源: Springer
PDF
【 摘 要 】

BackgroundIn contrast to cigarettes, electronic cigarette use (E-cigarettes) has grown substantially over the last decade. This is due to their promotion as both a safer alternative to cigarettes and as an aide to stop smoking. Critically, upon E-cigarette use, the user may be exposed to high doses of nicotine in addition to other compounds including flavouring chemicals, metal particulates and carbonyl compounds, particularly in highly vascularised tissues such as bone. However, there has been limited investigation into the impact of E-cigarette usage on bone physiology, particularly over extended time periods and there are no clinical recommendations regarding E-cigarette usage in relation to orthopaedic surgery. This literature review draws together data from studies that have investigated the impact of E-cigarette vapour and its major constituents on bone, detailing the models utilised and the relevant mechanistic and functional results.Main bodyCurrently there is a lack of studies both in vivo and in vitro that have utilised E-cigarette vapour, necessary to account for changes in chemical composition of E-cigarette liquids upon vaping. There is however evidence that human bone and bone cells express nicotine receptors and exposure of both osteoblasts and osteoclasts to nicotine, in high concentrations may reduce their viability and impair function. Similarly, it appears that aldehydes and flavouring chemicals may also negatively impact osteoblast viability and their ability to form bone. However, such functional findings are predominantly the result of studies utilising bone cell lines such as MG-63 or Saos-2 cells, with limited use of human osteoblasts or osteoclasts. Additionally, there is limited consideration for a possible impact on mesenchymal stem cells, which can also play an import role in bone repair.ConclusionUnderstanding the function and mechanism of action of the various components of E-cigarette vapour in mediating human bone cell function, in addition to long term studies to determine the potential harm of chronic E-cigarette use on human bone will be important to inform users of potential risks, particularly regarding bone healing following orthopaedic surgery and injury.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107062834059ZK.pdf 746KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:2次