期刊论文详细信息
BMC Bioinformatics
GRAPES-DD: exploiting decision diagrams for index-driven search in biological graph databases
Marco Beccuti1  Nicola Licheri1  Vincenzo Bonnici2  Rosalba Giugno2 
[1] University of Turin, Via Pessinetto 12, 10149, Turin, Italy;University of Verona, Strada le Grazie 15, 37134, Verona, Italy;
关键词: Query processing;    Pattern matching;    Subgraph isomorphism;    Graph indexing;    Decision diagrams;   
DOI  :  10.1186/s12859-021-04129-0
来源: Springer
PDF
【 摘 要 】

BackgroundGraphs are mathematical structures widely used for expressing relationships among elements when representing biomedical and biological information. On top of these representations, several analyses are performed. A common task is the search of one substructure within one graph, called target. The problem is referred to as one-to-one subgraph search, and it is known to be NP-complete. Heuristics and indexing techniques can be applied to facilitate the search. Indexing techniques are also exploited in the context of searching in a collection of target graphs, referred to as one-to-many subgraph problem. Filter-and-verification methods that use indexing approaches provide a fast pruning of target graphs or parts of them that do not contain the query. The expensive verification phase is then performed only on the subset of promising targets. Indexing strategies extract graph features at a sufficient granularity level for performing a powerful filtering step. Features are memorized in data structures allowing an efficient access. Indexing size, querying time and filtering power are key points for the development of efficient subgraph searching solutions.ResultsAn existing approach, GRAPES, has been shown to have good performance in terms of speed-up for both one-to-one and one-to-many cases. However, it suffers in the size of the built index. For this reason, we propose GRAPES-DD, a modified version of GRAPES in which the indexing structure has been replaced with a Decision Diagram. Decision Diagrams are a broad class of data structures widely used to encode and manipulate functions efficiently. Experiments on biomedical structures and synthetic graphs have confirmed our expectation showing that GRAPES-DD has substantially reduced the memory utilization compared to GRAPES without worsening the searching time.ConclusionThe use of Decision Diagrams for searching in biochemical and biological graphs is completely new and potentially promising thanks to their ability to encode compactly sets by exploiting their structure and regularity, and to manipulate entire sets of elements at once, instead of exploring each single element explicitly. Search strategies based on Decision Diagram makes the indexing for biochemical graphs, and not only, more affordable allowing us to potentially deal with huge and ever growing collections of biochemical and biological structures.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107037228184ZK.pdf 2323KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:8次