期刊论文详细信息
International Journal of STEM Education
Blended and more: instructors organize sensemaking opportunities for mathematical equations in different ways when teaching the same scientific phenomenon
Anita Schuchardt1  Linh Chau2  Fang Fang Zhao3 
[1] Department of Biology Teaching and Learning, College of Biological Sciences, University of Minnesota-Twin Cities, 5-210H Moos Tower, 515 Delaware Street, SE, 55455, Minneapolis, MN, USA;Department of Biology Teaching and Learning, College of Biological Sciences, University of Minnesota-Twin Cities, 5-220 Moos Tower, 515 Delaware Street, SE, 55455, Minneapolis, MN, USA;School of Teacher Education, Nanjing Normal University, No.1 Wenyuan Road Qixia District, 210046, Nanjing, Jiangsu, People’s Republic of China;
关键词: Instruction;    Blended sensemaking;    Mathematical equations;    Sensemaking;    Population growth;   
DOI  :  10.1186/s40594-021-00280-5
来源: Springer
PDF
【 摘 要 】

BackgroundMany students solving quantitative problems in science struggle to apply mathematical instruction they have received to novel problems. The few students who succeed often draw on both their mathematical understanding of the equation and their scientific understanding of the phenomenon. Understanding the sensemaking opportunities provided during instruction is necessary to develop strategies for improving student outcomes. However, few studies have examined the types of sensemaking opportunities provided during instruction of mathematical equations in science classrooms and whether they are organized in ways that facilitate integration of mathematical and scientific understanding. This study uses a multiple case study approach to examine the sensemaking opportunities provided by four different instructors when teaching the same biological phenomenon, population growth. Two questions are addressed: (1) What types of sensemaking opportunities are provided by instructors, and (2) How are those sensemaking opportunities organized? The Sci-Math Sensemaking Framework, previously developed by the authors, was used to identify the types of sensemaking. Types and organization of sensemaking opportunities were compared across the four instructors.ResultsThe instructors provided different opportunities for sensemaking of equations, even though they were covering the same scientific phenomenon. Sensemaking opportunities were organized in three ways, blended (previously described in studies of student problem solving as integration of mathematics and science resources), and two novel patterns, coordinated and adjacent. In coordinated sensemaking, two types of sensemaking in the same dimension (either mathematics or science) are explicitly connected. In adjacent sensemaking, two different sensemaking opportunities are provided within the same activity but not explicitly connected. Adjacent sensemaking was observed in three instructors’ lessons, but only two instructors provided opportunities for students to engage in blended sensemaking.ConclusionsInstructors provide different types of sensemaking opportunities when teaching the same biological phenomenon, making different resources available to students. The organization of sensemaking also differed with only two instructors providing blended sensemaking opportunities. This result may explain why few students engage in the successful strategy of integrating mathematics and science resources when solving quantitative problems. Documentation of these instructional differences in types and organization of sensemaking provides guidance for future studies investigating the effect of instruction on student sensemaking.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107034139106ZK.pdf 1335KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次