Movement Ecology | |
Prey and habitat distribution are not enough to explain predator habitat selection: addressing intraspecific interactions, behavioural state and time | |
Jeanne Clermont1  Alexis Grenier-Potvin1  Dominique Berteaux1  Gilles Gauthier2  | |
[1] Chaire de recherche du Canada en biodiversité nordique and Centre d’Études Nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, G5L 3A1, Rimouski, Québec, Canada;Département de biologie and Centre d’études nordiques, Université Laval, 2325 Rue de l’Université, G1V 0A6, Québec, Québec, Canada; | |
关键词: Arctic tundra; Behavioural state; Movement; Predation risk; Resource selection; Predator-prey interactions; Spatial anchor; Territoriality; Vulpes lagopus; | |
DOI : 10.1186/s40462-021-00250-0 | |
来源: Springer | |
【 摘 要 】
BackgroundMovements and habitat selection of predators shape ecological communities by determining the spatiotemporal distribution of predation risk. Although intraspecific interactions associated to territoriality and parental care are involved in predator habitat selection, few studies have addressed their effects simultaneously with those of prey and habitat distribution. Moreover, individuals require behavioural and temporal flexibility in their movement decisions to meet various motivations in a heterogeneous environment. To untangle the relative importance of ecological determinants of predator fine-scale habitat selection, we studied simultaneously several spatial, temporal, and behavioural predictors of habitat selection in territorial arctic foxes (Vulpes lagopus) living within a Greater snow goose (Anser caerulescens atlantica) colony during the reproductive season.MethodsUsing GPS locations collected at 4-min intervals and behavioural state classification (active and resting), we quantified how foxes modulate state-specific habitat selection in response to territory edges, den proximity, prey distribution, and habitats. We also assessed whether foxes varied their habitat selection in response to an important phenological transition marked by decreasing prey availability (goose egg hatching) and decreasing den dependency (emancipation of cubs).ResultsMultiple factors simultaneously played a key role in driving habitat selection, and their relative strength differed with respect to the behavioural state and study period. Foxes avoided territory edges, and reproductive individuals selected den proximity before the phenological transition. Higher goose nest density was selected when foxes were active but avoided when resting, and was less selected after egg hatching. Selection for tundra habitats also varied through the summer, but effects were not consistent.ConclusionsWe conclude that constraints imposed by intraspecific interactions can play, relative to prey distribution and habitat characteristics, an important role in the habitat selection of a keystone predator. Our results highlight the benefits of considering behavioural state and seasonal phenology when assessing the flexibility of predator habitat selection. Our findings indicate that considering intraspecific interactions is essential to understand predator space use, and suggest that using predator habitat selection to advance community ecology requires an explicit assessment of the social context in which movements occur.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107027350714ZK.pdf | 1672KB | download |