期刊论文详细信息
Journal of Statistical Distributions and Applications
A flexible multivariate model for high-dimensional correlated count data
A. Grant Schissler1  Tomasz J. Kozubowski1  Alexander D. Knudson1  Anna K. Panorska1 
[1] Department of Mathematics & Statistics, University of Nevada, 89557, Reno, USA;
关键词: Multivariate count data;    Copula;    Distribution theory;    Big data applications;    Gamma-Poisson hierarchy;    Mixed Poisson distribution;    Negative binomial distribution;    High-dimensional multivariate simulation;    RNA-sequencing data;    62E10;    62E15;    62H05;    62H10;    62H30;   
DOI  :  10.1186/s40488-021-00119-y
来源: Springer
PDF
【 摘 要 】

We propose a flexible multivariate stochastic model for over-dispersed count data. Our methodology is built upon mixed Poisson random vectors (Y1,…,Yd), where the {Yi} are conditionally independent Poisson random variables. The stochastic rates of the {Yi} are multivariate distributions with arbitrary non-negative margins linked by a copula function. We present basic properties of these mixed Poisson multivariate distributions and provide several examples. A particular case with geometric and negative binomial marginal distributions is studied in detail. We illustrate an application of our model by conducting a high-dimensional simulation motivated by RNA-sequencing data.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107025521683ZK.pdf 824KB PDF download
  文献评价指标  
  下载次数:23次 浏览次数:8次