期刊论文详细信息
Earth, Planets and Space
Operational solar flare prediction model using Deep Flare Net
Mamoru Ishii1  Yûki Kubo1  Mitsue Den1  Naoto Nishizuka1  Komei Sugiura2 
[1] Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei,, 184-8795, Tokyo, Japan;Department of Information and Computer Science, Keio University, 3-14-1 Hiyoshi, Kohoku,, 223-8522, Yokohama, Kanagawa, Japan;
关键词: Solar flares;    Space weather forecasting;    Prediction;    Operational model;    Deep neural networks;    Verification;   
DOI  :  10.1186/s40623-021-01381-9
来源: Springer
PDF
【 摘 要 】

We developed an operational solar flare prediction model using deep neural networks, named Deep Flare Net (DeFN). DeFN can issue probabilistic forecasts of solar flares in two categories, such as ≥ M-class and < M-class events or ≥  C-class and < C-class events, occurring in the next 24 h after observations and the maximum class of flares occurring in the next 24 h. DeFN is set to run every 6 h and has been operated since January 2019. The input database of solar observation images taken by the Solar Dynamic Observatory (SDO) is downloaded from the data archive operated by the Joint Science Operations Center (JSOC) of Stanford University. Active regions are automatically detected from magnetograms, and 79 features are extracted from each region nearly in real time using multiwavelength observation data. Flare labels are attached to the feature database, and then, the database is standardized and input into DeFN for prediction. DeFN was pretrained using the datasets obtained from 2010 to 2015. The model was evaluated with the skill score of the true skill statistics (TSS) and achieved predictions with TSS = 0.80 for ≥  M-class flares and TSS = 0.63 for ≥  C-class flares. For comparison, we evaluated the operationally forecast results from January 2019 to June 2020. We found that operational DeFN forecasts achieved TSS = 0.70 (0.84) for ≥  C-class flares with the probability threshold of 50 (40)%, although there were very few M-class flares during this period and we should continue monitoring the results for a longer time. Here, we adopted a chronological split to divide the database into two for training and testing. The chronological split appears suitable for evaluating operational models. Furthermore, we proposed the use of time-series cross-validation. The procedure achieved TSS = 0.70 for ≥  M-class flares and 0.59 for ≥  C-class flares using the datasets obtained from 2010 to 2017. Finally, we discuss the standard evaluation methods for operational forecasting models, such as the preparation of observation, training, and testing datasets, and the selection of verification metrics.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107024615557ZK.pdf 1582KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:9次