期刊论文详细信息
Journal of NeuroEngineering and Rehabilitation
Meaningful measurements of maneuvers: People with incomplete spinal cord injury ‘step up’ to the challenges of altered stability requirements
Tara Cornwell1  Wendy L. Ochs2  Keith E. Gordon3  Jane Woodward4 
[1] Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, 60611, Chicago, IL, USA;Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, 60611, Chicago, IL, USA;Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, 60208, Evanston, IL, USA;Edward Hines Jr. VA Hospital, 5000 5th Ave, 60141, Hines, IL, USA;Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, 60611, Chicago, IL, USA;Edward Hines Jr. VA Hospital, 5000 5th Ave, 60141, Hines, IL, USA;Shirley Ryan AbilityLab, 355 E Erie St, 60611, Chicago, IL, USA;
关键词: Walking;    Balance;    Spinal cord injury;    Maneuvers;    Stability;    Margin of stability;    Force fields;   
DOI  :  10.1186/s12984-021-00840-4
来源: Springer
PDF
【 摘 要 】

BackgroundMany people with incomplete spinal cord injury (iSCI) have the ability to maneuver while walking. However, neuromuscular impairments create challenges to maintain stability. How people with iSCI maintain stability during walking maneuvers is poorly understood. Thus, this study compares maneuver performance in varying external conditions between persons with and without iSCI to better understand maneuver stabilization strategies in people with iSCI.MethodsParticipants with and without iSCI walked on a wide treadmill and were prompted to perform lateral maneuvers between bouts of straight walking. Lateral force fields applied to the participants’ center of mass amplified or attenuated the participants’ movements, thereby increasing the capability of the study to capture behavior at varied levels of challenge to stability.ResultsBy examining metrics of stability, step width, and center of mass dynamics, distinct strategies emerged following iSCI. The minimum margin of stability (MOSmin) on each step during maneuvers indicated persons with iSCI generally adapted to amplified and attenuated force fields with increased stability compared to persons without iSCI, particularly using increased step width and reduced center of mass excursion on maneuver initiation. In the amplified field, however, persons with iSCI had a reduced MOSmin when terminating a maneuver, likely due to the challenge of the force field opposing the necessary lateral braking. Persons without iSCI were more likely to rely on or oppose the force field when appropriate for movement execution. Compared to persons with iSCI, they reduced their MOSmin to initiate maneuvers in the attenuated and amplified fields and increased their MOSmin to arrest maneuvers in the amplified field.ConclusionsThe different force fields were successful in identifying relatively subtle strategy differences between persons with and without iSCI. Specifically, persons with iSCI adopted increased step width and reduction in center of mass excursion to increase maneuver stability in the amplified field. The amplified field may provoke practice of stable and efficient initiation and arrest of walking maneuvers. Overall, this work allows better framing of the stability mechanisms used following iSCI to perform walking maneuvers.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107016232502ZK.pdf 1457KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:6次