| Сибирский математический журнал | |
| Combinatorial Designs, Difference Sets, and Bent Functions as Perfect Colorings of Graphs and Multigraphs | |
| article | |
| V. N. Potapov1  S. V. Avgustinovich1  | |
| [1] Sobolev Institute of Mathematics | |
| 关键词: perfect coloring; transversals of a hypergraph; combinatorial designs; q-analogs of combinatorial designs; difference sets; bent functions; Johnson graph; Grassmann graph; Delsarte–Hoffman bound; | |
| DOI : 10.1134/S0037446620050109 | |
| 学科分类:数学(综合) | |
| 来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk | |
PDF
|
|
【 摘 要 】
We prove that (1): the characteristic function of each independent set in each regular graph attaining the Delsarte–Hoffman bound is a perfect coloring; (2): each transversal in a uniform regular hypergraph is an independent set in the vertex adjacency multigraph of a hypergraph attaining the Delsarte–Hoffman bound for this multigraph; and (3): the combinatorial designs with parameters $ t $ - $ (v,k,\lambda) $ and their $ q $ -analogs, difference sets, Hadamard matrices, and bent functions are equivalent to perfect colorings of some graphs of multigraphs, in particular, the Johnson graph $ J(n,k) $ for $ (k-1) $ - $ (v,k,\lambda) $ -designs and the Grassmann graph $ J_{2}(n,2) $ for bent functions.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202106300004662ZK.pdf | 190KB |
PDF