期刊论文详细信息
| Сибирский математический журнал | |
| Inequalities for Determinants and Characterization of the Trace | |
| article | |
| A. M. Bikchentaev1  | |
| [1] Lobachevskii Institute of Mathematics and Mechanics of Kazan (Volga Region) Federal University | |
| 关键词: linear functional; matrix; trace; determinant; permanent; matrix exponential; Fischer inequality; | |
| DOI : 10.1134/S0037446620020068 | |
| 学科分类:数学(综合) | |
| 来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk | |
PDF
|
|
【 摘 要 】
Let tr be the canonical trace on the full matrix algebra $${{\cal M}_n}$$ with unit I. We prove that if some analog of classical inequalities for the determinant and trace (or the permanent and trace) of matrices holds for a positive functional φ on $${{\cal M}_n}$$ with φ(I) = n, then φ = tr. Also, we generalize Fischer’s inequality for determinants and establish a new inequality for the trace of the matrix exponential.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202106300004607ZK.pdf | 156KB |
PDF