Сибирский математический журнал | |
On Supersolubility of a Group with Seminormal Subgroups | |
article | |
V. S. Monakhov1  A. A. Trofimuk2  | |
[1] Francisk Skorina Gomel State University;Pushkin Brest State University | |
关键词: supersoluble group; nilpotent group; seminormal subgroup; derived subgroup; X-residual; index of a subgroup; Sylow subgroup; | |
DOI : 10.1134/S0037446620010103 | |
学科分类:数学(综合) | |
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk | |
【 摘 要 】
A subgroup A is called seminormal in a group G if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. Studying a group of the form G = AB with seminormal supersoluble subgroups A and B, we prove that $$G^{\mathfrak{U}}=\left(G^{\prime}\right)^{\mathfrak{N}}$$. Moreover, if the indices of the subgroups A and B of G are coprime then $$G^{\mathfrak{U}}=\left(G^{\mathfrak{N}}\right)^{2}$$. Here $$\mathfrak{N}$$, $$\mathfrak{U}$$, and $$\mathfrak{N}^2$$ are the formations of all nilpotent, supersoluble, and metanilpotent groups respectively, while $$H^{\mathfrak{X}}$$ is the $$\mathfrak{X}$$-residual of H. We also prove the supersolubility of G = AB when all Sylow subgroups of A and B are seminormal in G.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300004596ZK.pdf | 176KB | download |