期刊论文详细信息
Сибирский математический журнал
On Supersolubility of a Group with Seminormal Subgroups
article
V. S. Monakhov1  A. A. Trofimuk2 
[1] Francisk Skorina Gomel State University;Pushkin Brest State University
关键词: supersoluble group;    nilpotent group;    seminormal subgroup;    derived subgroup;    X-residual;    index of a subgroup;    Sylow subgroup;   
DOI  :  10.1134/S0037446620010103
学科分类:数学(综合)
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk
PDF
【 摘 要 】

A subgroup A is called seminormal in a group G if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. Studying a group of the form G = AB with seminormal supersoluble subgroups A and B, we prove that $$G^{\mathfrak{U}}=\left(G^{\prime}\right)^{\mathfrak{N}}$$. Moreover, if the indices of the subgroups A and B of G are coprime then $$G^{\mathfrak{U}}=\left(G^{\mathfrak{N}}\right)^{2}$$. Here $$\mathfrak{N}$$, $$\mathfrak{U}$$, and $$\mathfrak{N}^2$$ are the formations of all nilpotent, supersoluble, and metanilpotent groups respectively, while $$H^{\mathfrak{X}}$$ is the $$\mathfrak{X}$$-residual of H. We also prove the supersolubility of G = AB when all Sylow subgroups of A and B are seminormal in G.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300004596ZK.pdf 176KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次