| Journal of inequalities and applications | |
| New estimations for the Berezin number inequality | |
| article | |
| Mojtaba Bakherad1  Ulas Yamancı2  | |
| [1] Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan;Department of Statistics, Suleyman Demirel University | |
| 关键词: Inequalities; Berezin number; Berezin symbol; Geometric mean; | |
| DOI : 10.1186/s13660-020-2307-0 | |
| 学科分类:电力 | |
| 来源: SpringerOpen | |
PDF
|
|
【 摘 要 】
In this paper, by the definition of Berezin number, we present some inequalities involving the operator geometric mean. For instance, it is shown that if $X, Y, Z\in {\mathcal{L}}(\mathcal{H})$ such that X and Y are positive operators, then $$\begin{aligned} \operatorname{ber}^{r} \bigl( ( X\mathbin{\sharp} Y ) Z \bigr) &\leq \operatorname{ber} \biggl(\frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q}+ \frac{X^{ \frac{rp}{2}}}{p} \biggr) -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2}, \end{aligned}$$ in which $X\mathbin{\sharp} Y=X^{\frac{1}{2}} ( X^{-\frac{1}{2}}YX^{- \frac{1}{2}} ) ^{\frac{1}{2}}X^{\frac{1}{2}}$, $p\geq q>1$ such that $r\geq \frac{2}{q}$ and $\frac{1}{p}+\frac{1}{q}=1$.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202106300003480ZK.pdf | 1417KB |
PDF