期刊论文详细信息
Journal of inequalities and applications | |
Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers | |
article | |
Ho-Hyeong Lee1  Jong-Do Park1  | |
[1] Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University | |
关键词: Fibonacci number; Reciprocal sum; Catalan’s identity; Convergent series; | |
DOI : 10.1186/s13660-020-02359-z | |
学科分类:电力 | |
来源: SpringerOpen | |
【 摘 要 】
Let $\{f_{k} \} _{k=1}^{\infty}$ be a Fibonacci sequence with $f_{1}=f_{2}=1$. In this paper, we find a simple form $g_{n}$ such that $$\lim_{n\rightarrow\infty} \Biggl\{ \Biggl(\sum^{\infty}_{k=n}{a_{k}} \Biggr)^{-1}-g_{n} \Biggr\} =0, $$ where $a_{k}=\frac{1}{f_{k}^{2}}$, $\frac{1}{f_{k}f_{k+m}}$, or $\frac{1}{f_{3k}^{2}}$. For example, we show that $$\lim_{n\rightarrow\infty} \Biggl\{ \Biggl(\sum^{\infty}_{k=n}{ \frac {1}{f_{3k}^{2}}} \Biggr)^{-1}- \biggl(f_{3n}^{2}-f_{3n-3}^{2}+ \frac {4}{9}(-1)^{n} \biggr) \Biggr\} =0. $$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300003434ZK.pdf | 1502KB | download |