期刊论文详细信息
Journal of inequalities and applications
Optimal bounds for Toader mean in terms of general means
article
Qian Zhang1  Bing Xu3  Maoan Han4 
[1] Mathematics and Science College, Shanghai Normal University;School of Science, Southwest University of Science and Technology;Department of Mathematics, Sichuan University;College of Mathematics and Computer Science, Zhejiang Normal University
关键词: Toader mean;    Double inequality;    Optimal bounds;    Complete elliptic integral;   
DOI  :  10.1186/s13660-020-02384-y
学科分类:电力
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we present the best possible parameters $\alpha (r)$, $\beta (r)$ such that the double inequality $$\begin{aligned} {}[\alpha (r)M^{r}(a,b)+(1-\alpha (r))N^{r}(a,b)] ^{1/r} 0$ with $a\neq b$, where $$ \operatorname{TD}(a,b):= \int ^{\pi /2}_{0}\sqrt{a^{2}\cos ^{2}\theta +b^{2}\sin ^{2} \theta }\,d\theta $$ is the Toader mean, and M, N are means. As applications, we attain the optimal bounds for the Toader mean in terms of arithmetic, contraharmonic, centroidal and quadratic means, and then we provide some new bounds for the complete elliptic integral of the second kind.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300003407ZK.pdf 1536KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次