期刊论文详细信息
Journal of inequalities and applications | |
On \(L^{2}\) -boundedness of Fourier integral operators | |
article | |
Jie Yang1  Wenyi Chen2  Jiang Zhou1  | |
[1] College of Mathematics and System Science, Xinjiang University;School of Mathematics and Statistics, Wuhan University | |
关键词: Pseudo-differential operator; Fourier integral operator; Phase function; | |
DOI : 10.1186/s13660-020-02439-0 | |
学科分类:电力 | |
来源: SpringerOpen | |
【 摘 要 】
Let $T_{a,\varphi }$ be a Fourier integral operator with symbol a and phase φ. In this paper, under the conditions $a(x,\xi )\in L^{\infty }S^{n(\rho -1)/2}_{\rho }(\omega )$ and $\varphi \in L^{\infty }\varPhi ^{2}$, the authors show that $T_{a,\varphi }$ is bounded from $L^{2}(\mathbb{R}^{n})$ to $L^{2}(\mathbb{R}^{n})$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300003352ZK.pdf | 1328KB | download |