期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
q -Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra U q ( u ( n ,1))
article
Raisa M. Asherova1  Čestmír Burdík2  Miloslav Havlíček2  Yuri F. Smirnov1  Valeriy N. Tolstoy1 
[1] Institute of Nuclear Physics, Moscow State University;Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague;Deceased
关键词: quantum algebra;    extremal projector;    reduction algebra;    Shapovalov form;    noncompact quantum algebra;    discrete series of representations;    Gelfand–Graev basis;   
DOI  :  10.3842/SIGMA.2010.010
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

For the quantum algebra U q (gl( n +1)) in its reduction on the subalgebra U q (gl( n )) an explicit description of a Mickelsson-Zhelobenko reduction Z -algebra Z q (gl( n +1),gl( n )) is given in terms of the generators and their defining relations. Using this Z -algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra U q ( u ( n ,1)) which is a real form of U q (gl( n +1)), namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001795ZK.pdf 271KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次